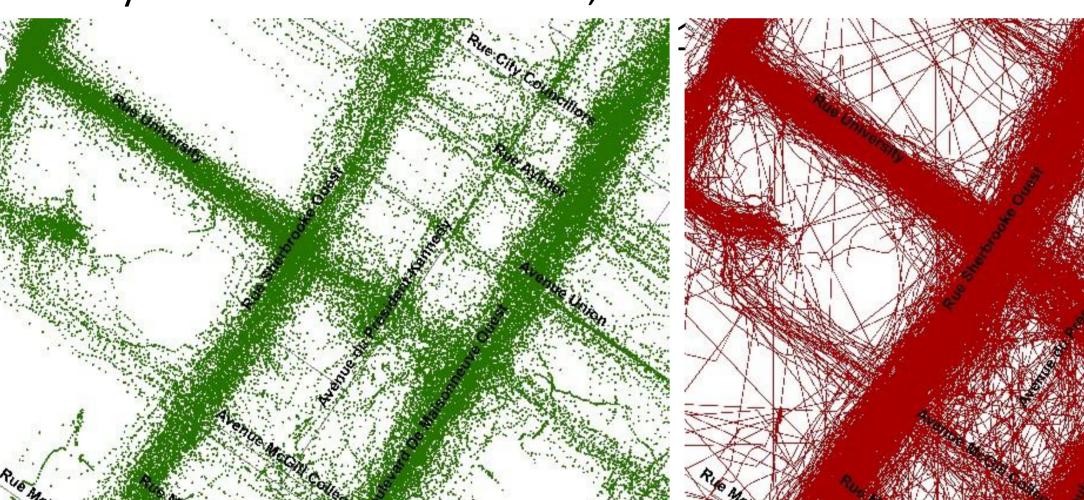


TAC Conference September 28-October 1, 2014

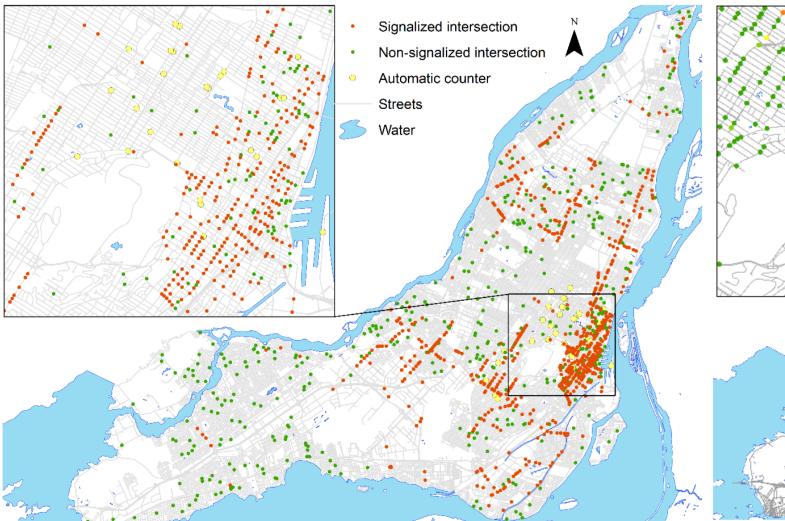
INTRODUCTION

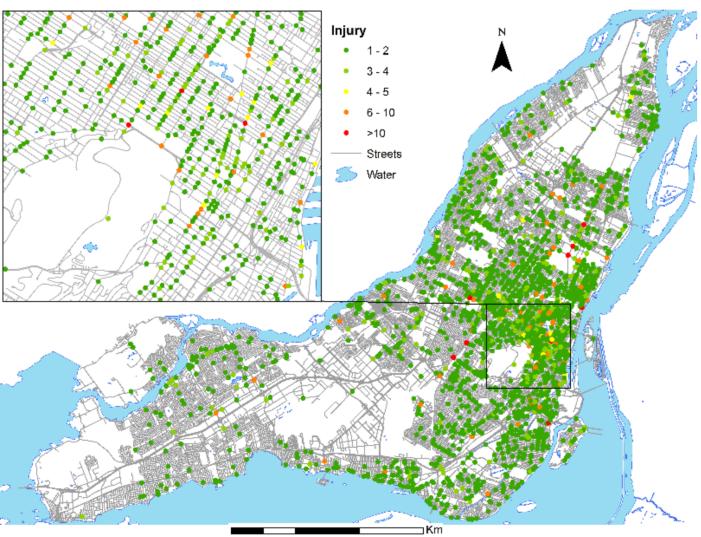
- > Active modes of transportation are on the rise unfortunately commonly referred to as vulnerable road users
- > A high number of injuries occur each year in urban cities
- In Montreal, from 1999-2008 over 9000 cyclists were injured about 62% at intersections
- > To identify risk factors and map risk in the network three main sources of data are required: 1) geocoded injury data, 2) geometric design and built environment characteristics and 3) exposure measures


OBJECTIVES

- 1. Develop a methodology to estimate bicycle volumes followed by injury risk throughout the entire Montreal network of links and intersections
- 2. Map flows, injuries and risk throughout the entire network
- 3. Identify hotspots

DATA

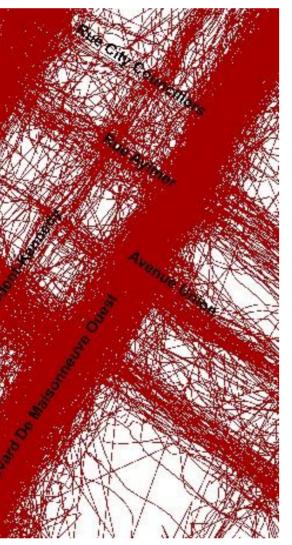

- Smartphone GPS trips and traces:
- > Mon RésoVélo Smartphone application for both Android and iOS
- > July 2nd 2013 to November 15, 2013



Raw GPS points and traces

- Short-term and long-term bicycle counts:
 - >8-hour manual counts at over 600 signalized intersections in 2009
 - 1-hour manual counts at over 400 non-signalized intersections in 2012
 - Long-term automatic counts from inductive loops and pneumatic tubes along 30 different road segments - installed since 2008

Intersections with manual counts and automatic count locations


Cyclist injuries at intersections

Cyclist injury data:

- > From ambulance interventions
- From 2003-2008 over 5,000 cyclists were injured at intersections and over 3,500 were injured along segments

SAFETY APPLICATIONS OF CYCLIST GPS TRIP DATA IN MONTREAL

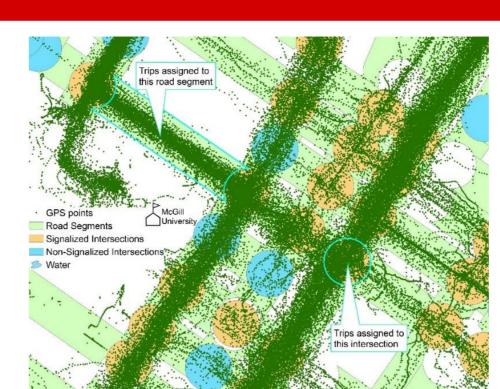
The methodology has several steps:

METHODOLOGY

- **1**.Assign the GPS traces to the network elements
- Map all raw GPS observations (x,y)
- Use buffer approach to assign to links and intersections – 35 metres – to capture majority of trips
- 2.Obtain AADB volumes from short-term and long-term counts and develop an extrapolation function for the GPS data
- Compute AADB at manual count sites from permanent counter data
- Develop function to associate AADB with GPS flows:
- $AADB_i \propto \beta \cdot T_i + \alpha$ where β = parameter weighing the number of GPS trac factor associated with geometric design or built enviro
- 3.Validate the predicted AADB from GPS data three development of Safety Performance Functions
- Develop SPF models with both sources of bic
- Compare parameter coefficients and variable
- 4. Apply the predicted AADB for links and intersed
- Map flows, injuries and risk throughout entire network
- Identify hotspots

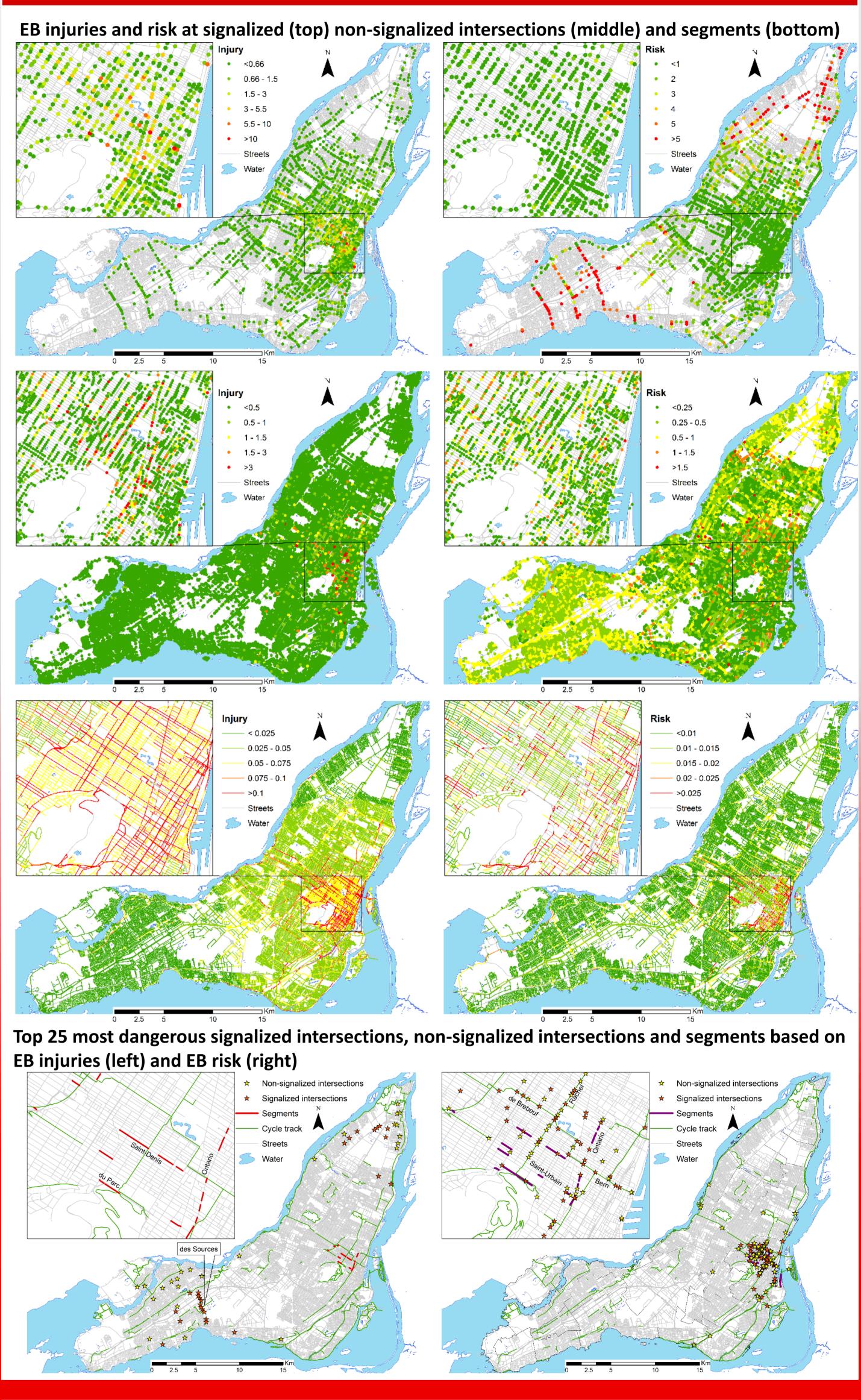
RESULTS

Doculto of AADD model


Signal		Non-Signalized Intersections							
Variable	Coef	. P>z	Varia	Variable			Coef.	P>z	
GPS count - No	11.5	0	GPS of	GPS count - No facilities			1.28	0	
GPS count - Bicycle path		6.71	0	GPS c	GPS count - Bicycle path			1.15	0
GPS count - Cycle track		17.43	3 0	GPS c	GPS count - Cycle track			4.14	0
Distance to downtown*		-15.3	4 0	Distar	Distance to downtown*			-24.1	0
Constant	238.4	4 0	Const	Constant				0	
R-squared		0.696		R-squ	R-squared			0.58	
		ments	nents						
	Variable	Cycle Track		Bicycle Path		No Facility			
		Coef.	P>z	Coef.	P>z	Coef.	P>z		
	GPS flow	20.1	0	9.4	0	46.6	0.001		
	Constant	1557.1		138	1387.1		1579.8		
	R-Squared	0.	52	0.7	0.76		0.27		

alized Intersections					Non-Signalized Intersections						
		Coef.	P>z	Varia	Variable			Coef.	P>z		
0	facilities	11.5 0		GPS c	GPS count - No facilities				0		
ic	cycle path 6.71 0		GPS c	GPS count - Bicycle path				0			
yc	ycle track 17.43 0		GPS c	GPS count - Cycle track			4.14	0			
W]	ntown* -15.34 0		Distar	Distance to downtown*			-24.1	0			
	238.4 0		Const	Constant				0			
		R-squ	R-squared				8				
			Seg	ments	nents						
	Variable	Cycle Track		Bicycle	Bicycle Path		acility				
	Variable	Coef.	P>z	Coef.	P>z	Coef.	P>z				
	GPS flow	20.1	0	9.4	0	46.6	0.001				
	Constant	1557.1		138	1387.1		1579.8				
	R-Squared	0.52		0.7	0.76		0.27				

Validation for cignalized intercections


Validation for signalized in	*Ln = Natural logarithm				
AADB from manual	AADB from GPS trips				
Variable	Coef. P>z		Variable	Coef.	P>z
Ln* bicycle flow	0.510	0	Ln* bicycle flow	0.531	0
Ln* right turn motor-vehicle			Ln* right turn motor-	0.156	0.012
flow	0.174	0.008	vehicle flow		
Ln* left turn motor-vehicle	eft turn motor-vehicle		Ln* left turn motor-vehicle	0.131	0.013
flow	0.138	0.012	flow		
Crosswalk width	0.010	0.002	Crosswalk width	0.010	0.002
Bus stop	0.468	0.002	Bus stop	0.595	0
Raised median	-0.478	0.002	Raised median	-0.475	0.002
Constant	-6.53		Constant	-6.57	
Log-likelihood	-621.07		Log-likelihood	-628.26	
AIC	1258.14		AIC	1272.52	
Dispersion parameter	0.553		Dispersion parameter	0.634	

Jillian Strauss and Luis Miranda-Moreno Department of Civil Engineering and Applied Mechanics, McGill University

ces denoted as T					
ough the					
(SPF)	SPF_{count}				
cycle flows	VS				
e significance	SPF_{GPS}				
ctions for safety applications					
re network					

RESULTS

CONCLUSION

Richness of the GPS data - able to map flows, injuries and risk for cyclists throughout the entire network - used for many planning purposes > Cyclist risk at intersections - greater outside the central neighbourhoods of the island where bicycle infrastructure is lacking - injuries are higher in the central neighbourhoods

For segments both injuries and risk are highest in the central neighbourhoods overall, risk is much lower at segments than at intersections

