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Introduction 

Traditionally, road safety has been measured by means of motor-vehicle collision events. Motor-
vehicle collisions are, in fact, those events resulting in property damage, injury or fatality and can 
be related directly to safety (Garber and Hoel 2014). Collision events are commonly used to 
determine collision frequency defined as the count of collisions observed at a geographical space 
over a specified period of time (e.g., year) which is the most common indicator to analyze road 
safety (Lord and Mannering 2010). However, motor-vehicle collisions are rare events, and a 
prolonged observational period (e.g., several years) is usually required to collected them. 
Moreover, evaluating safety using collision events is a reactive approach (a countermeasure is 
implemented only after collisions have occurred). Therefore, the use of surrogate safety measures 
which are able to measure road safety in place of crash frequency, has become a key area of 
research (Boonsiripant 2009; Li et al. 2013; Tarko 2018).  

Surrogate road safety measures have been gaining an increasing popularity in recent years in 
highway engineering. Surrogate safety measures provide an alternative approach to traditional 
collision-based measures. In addition, surrogate measures can solve the issue related to the 
reactive nature of collision data use in statistical analysis. Regarding speed-related variable use 
as potential surrogate safety measure, it is important to recall from physics that the kinetic energy 
of a body grows with the square of its speed. Therefore, the higher the speed during a collision, 
the higher the kinetic energy transferred from the bullet vehicle to the subjective vehicle, and 
higher the severity of a collision. Moreover, traveling at higher speeds results in longer perception-
reaction distances and longer stopping distances. Finally, it is important to mention that also 
speed variability among vehicles is responsible for interactions among them (virtually interactions 
among vehicles would be impossible to occur without speed variability) and, therefore, the more 
the interactions the more the possibility of “unsafe” events, conflicts and ultimately collisions. 
Because of all these reasons, it is reasonable to assume that motor-vehicle travel speeds might 
be associated to road safety and a practical method for converting speed-related measurements 
into a corresponding collision frequency and/or severity can be developed. 

Quantifying and establishing a comprehensive understanding of the relationship between speed 
and safety and the use of speed as a surrogate for safety evaluation is an important subject of 
research. Several research studies over the years investigated speed-related variables as 
surrogate measures of safety (Tarko 2018; Elvik, Christensen, and Amundsen 2004; Gargoum 
and El-Basyouny 2016; Taylor, Lynam, and Baruya 2002; X. Wang et al. 2018). However, more 
research is needed to understand the relationship between speed variability measures and safety. 
It is, in fact, important to understand whether vehicles travelling slower or faster than the mean 
speed of traffic are more often involved in collisions than vehicles travelling at a speed close to 
the mean speed. Despite several studies explored the relationship between the speed levels and 
safety, some studies have argued that speed variability variables (e.g., standard deviation, 
variance, and coefficient of variation) can be better predictors of safety (Taylor, Lynam, and 
Baruya 2000b; Lee, Saccomanno, and Hellinga 2002). Hence, the investigation of variables 
related to speed variability could potentially yield to new results in the field of surrogate safety 
measures (especially in low-speed urban environment). 

Research Statement 

In recent years, the City of Saskatoon has conducted several speed surveys within its 
neighborhood traffic reviews (NTRs) to gain an understanding of the traffic patterns at the 
neighborhood level opposed to the case-by-case analysis prior to that (“Neighbourhood Traffic 
Reviews” 2018). Around eight neighborhoods are selected each year for the analysis based on 
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prioritization criteria that considers the residents’ concerns, collision history, the stage of 
development and the age of the neighborhoods. Within this context, the use of speed-related 
variables as surrogate measures of safety, and in particular speed variability measures, could 
overcome the limitation of collision data availability or complement the use of collision data in road 
safety evaluations. However, a clear relationship between collision frequency and speed 
variability has to be demonstrated.  

Therefore, the objective of this research work was to investigate the relationship between speed 
variability variables and predicted crash frequency with the aim of supporting the use of speed-
related variables in road safety analysis. Three speed variability measures based on field free-
flow speeds collected for 150 residential urban segments in the City of Saskatoon (Canada) were 
estimated and their association to collision frequency was explored using path analysis. Path 
analysis is a type of statistical technique used to model simultaneously different regression 
models where the association between speed variability and safety (collision frequency) can be 
mediated, moderated, or related directly to several different road and traffic factors. The analysis 
was conducted using Bayesian statistics.  

Literature Review 

It is part of the state-of-the-practice in road safety to use a safety performance function (SPF) to 
predict collision frequency at a road site (AASHTO 2010). In its canonical form, exposure factors 
like traffic volume in the form of Average Annual Daily Traffic (AADT), and the length of the road 
segment are the fundamental variables in SPFs. Collision counts are modeled using a negative 
binomial distribution to account for overdispersion property of collision data (Poch and Mannering 
1996). Other site-related (roadway and roadside) characteristics that are expected to affect 
collision frequency are usually added to the canonical form of an SPF (e.g., number of lanes, 
access point and driveway density). Therefore, SPFs are developed to understand what roadway 
and traffic factors are related to collision frequency with the ultimate goal to make rationale 
decisions related to the planning, design, operation, and maintenance of roadway networks. 

The effect of speed-related variables on collision frequency using an SPF has been investigated 
in several studies. A large body of research literature suggests that higher speed levels are 
associated to lower level of safety expressed as increased collision frequency (Elvik, Christensen, 
and Amundsen 2004; Taylor, Lynam, and Baruya 2002; C. Wang, Quddus, and Ison 2009). On 
the other hand, this positive relationship between speed-collision levels is challenged by other 
empirical evidence. For example, Taylor et al. (2000a) developed simple SPF regression models. 
The analysis of the data revealed that the average speed was negatively associated with crash 
frequency. The authors attributed this finding to the difference in road quality at the surveyed road 
segments; therefore, they created homogenous groups through which the effects of road quality 
on the relationship between collisions and speed could be captured. Further analysis of the data 
revealed that average speed was positively correlated with collisions while including a group 
variable. Therefore, the authors concluded that the speed-crash relationship is expected to be 
positive unless there is one or more unobserved factors influencing this relationship. Another 
study by Gargoum and El-Basyouny (2016) investigated the relationship between average speed, 
crash frequency and their predictors in the urban area. The modeling was conducted using path 
analysis where partial and full mediation effects of speed on crash frequency predictors were 
analyzed. The most important outcome from this study was the mediation effects of speed and its 
relationship with crash frequency which was found to be positive and statistically significant. 

Regarding speed variability measures, in a study by Lee et al. (2002) traffic and environmental 
variables were modeled as factors affecting collision frequency. The authors used collision and 
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traffic flow data extracted from loop detectors along a 10-km stretch of the Gardiner Expressway 
in the city of Toronto. Detectors were located at various locations upstream of on-ramps/off-ramps 
or lane transition zones (lane increase/lane reduction) and upstream of straight sections. The 
authors concluded that the variability in speeds within the lane and across lanes was positively 
associated to crash rates. In a subsequent study by Elvik et al. (2004), researchers used a 
theoretical model to demonstrate that speed variance would generate more conflict situations 
among vehicles. Higher conflict rates can translate to higher probability of collision events (i.e., 
lower safety). Two scenarios were compared: a scenario A where all vehicles travelled at the 
same speed level, leading to 32 conflict points and a scenario B where speed variation among 
the same number of vehicles was allowed. In this latter theoretical scenario, the number of 
conflicts grew to 42, which was about 30% more than scenario A. It was, therefore, theoretically 
demonstrated that high levels of speed variability contributed to higher conflict rate which can 
potentially relate to higher crash frequency.  

Overall, these studies offered several insights to establish the effect of speed-related variables to 
safety. While higher speed levels seemed to be more associated to higher collision levels, more 
research is needed to demonstrate the theoretical results that speed variability variables (e.g., 
standard deviation, variance, and coefficient of variation) can be associated to higher collision 
frequency levels. 

Data Collection and Analysis 

In this work, speed data was collected at 140 locations in 7 neighborhoods - suburban 
development areas (SDAs) of the City of Saskatoon - as part of the city’s NTRs. Speeds were 
measured between the months of April and October for the years 2017 and 2018 using pneumatic 
tubes placed at mid-segments. Twenty-four hours of data were recorded at all sites for an average 
of 6 days per location. In order to develop operating speed prediction models, speed 
measurements needed to reflect free-flow conditions. Therefore, all speed measurements for 
vehicles with headway less than 6 seconds were removed which is equivalent to volumes of less 
than 600 veh/h (Hassan and Sarhan 2011; Gargoum and El-Basyouny 2016). Nighttime and 
weekend measurements were also removed from speed data to eliminate biases due to visual 
impairment in low-light environments or unusual travel patterns/behavior in non-weekdays 
(Moses, Mtoi, and Ozguven 2014).  

Raw speed data were aggregated in 15 speed bins (i.e., <10 km/h, 10-15 km/h, 15-20 km/h, 20-
25 km/h, ..., >90 km/h), in addition to vehicle counts aggregated in 15-min intervals; speed data 
were extracted by plotting the speed curves given aggregated speeds and bin values. Speed 
measurements such as the average speed, standard deviation of speed, variance of speed along 
with the coefficient of variation of speeds were determined mathematically from the speed curves. 
The first variable measured was the average spot speed (time-mean speed, or TMS) for 
aggregated speed data. Eq. 1 shows the formula for calculating TMS where  vത୧ is the average 
speed (TMS) per site ‘i', ‘g’ is the number of speed groups (bins) where ‘j’ is the order of the speed 
group, f୨ is the number of observations per speed group, v୨ is the midpoint speed per speed group 
and ‘N’ is the total number of speed observations. Moreover, speed variance (σ

ଶ) of TMS was 
calculated using Eq. 2. The standard deviation of speed (SD) corresponding to the calculated 
TMS can be obtained by calculating the square-root of the speed variance. 

 vത୧ =
1

N
 ൫f୨ v୨൯



୨ୀଵ
 (Eq. 1) 
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σ୧

ଶ =
∑ f୨൫v୨൯

ଶ
୨ୀଵ −

1
N

ቀ∑ ൫f୨ v୨൯

୨ୀଵ ቁ

ଶ

N − 1
 (Eq. 2) 

Lastly, the coefficient of variation of speed was also measured. The coefficient of variation (CV) 
is the ratio of the standard deviation to the average (Eq. 3). It is a unitless value that is considered 
a standardized measure of variation. A large CV indicates a high speed variability in the sample, 
normalized by its mean speed, and a small CV indicates a low variability of speeds (AASHTO 
2010). 

 CV୧ = ඥσ
ଶ vൗ   (Eq. 3) 

It is worth to mention that the average spot speed (TMS) is not representative of the average 
speed of vehicles along the length of the road segment. The average speed over the length of a 
road segment (i.e., space-mean speed, or SMS) is always lower than the TMS which yields higher 
traffic densities, thus more relevant to design-related applications. Speed measurements can be 
converted from TMS to SMS using Eq. 4 and the obtained measurements can be employed to 
derive the speed variation parameters (SD and CV); where, vୗ is the space-mean speed (SMS), 
v is the average spot speed (TMS) and σ

ଶ  is the variance of the TMS. The variance of the space-
mean speed can then be calculated knowing the values of the TMS and the SMS as shown in Eq. 
5. 

 vୗ = v − ൫σ
ଶ v⁄ ൯ (Eq. 4) 

 σୗ
ଶ = (v − vୗ) vୗ (Eq. 5) 

Along with speed data, collision counts, traffic volumes and roadway/traffic features for the 140 
locations were collected. The total number of crashes in 5 years (2014 to 2018) was selected as 
the temporal frame for this evaluation. This is because crashes are rare events that require 
prolonged observational periods to be employed for statistical inference. Moreover, traffic 
volumes were obtained from the speed data sheets (i.e., NTR data). Daily traffic can be estimated 
by summing all hourly traffic volumes in a day and, by considering all days in the data set, the 
average daily traffic (ADT) for each road site can be estimated. After, a monthly modification factor 
was applied to ADTs to determine the AADT for each site.  

Furthermore, data describing road and traffic features of selected road segments were obtained 
from Google Street View and tools integrated into Google Earth. The survey made use of 2018 
observations. Detailed description of these variables along with speed, collision and traffic volume 
variables used in the modeling is provided in Table 1 and the corresponding summary statistics 
in Table 2.  

Table 1 Description of variables 

Variable Description 

T5Y  The total number of crashes in 5 years (from 2014 to 2018)  

SMS 
Space-mean speed; the average (mean) speed of vehicles measured by taking the average of 
vehicles’ speed measurements along the length of the traffic segment 

SD Standard deviation of speed; the measure of deviation of speeds from the mean 
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Variable Description 

CV Coefficient of variation of speed; calculated based on the space-mean speed and its standard 
deviation 

AADT Average annual daily traffic volume (vehicles/day) on a road segment  

L Length of the road segment, measured between two traffic control devices interrupting the flow 
(signal, yield or stop sign) 

TWW Travelled-way width: the cross-sectional width of the paved surface (curb to curb) 

Crv  Presence of horizontal curvature at the road segment; 0 = no curvature; 1 = curved road 
segment 

Lane  Lane configuration; 0 = baseline condition (2-lane roadway); 1 = lane configuration otherwise 

Med Raised median presence; 0 = not present; 1 = present 

CLP Centerline presence: centerline marking dividing two opposing way of traffic. 0 = not present; 1 = 
present 

OSP On-street parking presence: 0 = not present on both sides; 1 = all other cases 

BL Bike lane presence: 0 = not present on both sides; 1 = all other cases 

SW Sidewalk presence: 1 = present on both sides; 0 = all other cases 

AccPD Density of access points: the count of stop or yield-controlled accesses along the road segment 
per unit of length; an access point has a minimum flow rate of 10 vehicles/hour 

DW Density of driveways: the count of accesses to properties along the road segment per unit 
length; a driveway has a maximum flow rate of 10 vehicles/hour  

PedX Pedestrian crossings presence: 0 = pedestrian crossings not present; 1 = pedestrian crossings 
present; pedestrian crossing points are only considered present when a sign or pavement 
marking is present. 

BS  Bus stop presence: 0 = not present; 1 = at least 1 bus stop present 

SchZn School zone presence: accounts for the presence of a school zone sign indicating a lower speed 
limit (30 km/h). 0 = school zone not present; 1 = school zone is present 

 

Table 2 Summary statistics of variables 

Variable Unit of Measure Maximum Minimum Average Std. Dev. 

T5Y Collisions/5 years 116.00 0.00 15.39 18.71 
SMS km/h 77.60 18.47 39.72 8.75 
SD km/h 10.78 4.75 7.83 1.17 
CV (Unitless) 0.41 0.12 0.21 0.05 
AADT Vehicles/day 18,499 153 3,594.25 3,915.72 
L m 1,863 100 702.03 412.33 
TWW m 25.00 6.75 12.91 3.04 
Crv 0/1 1.00 0.00 0.43 0.50 
Lane 0/1 1.00 0.00 0.10 0.30 
Med 0/1 1.00 0.00 0.09 0.29 
CLP 0/1 1.00 0.00 0.38 0.49 
OSP 0/1 1.00 0.00 0.92 0.27 
BL 0/1 1.00 0.00 0.06 0.25 
S 0/1 1.00 0.00 0.89 0.32 
AccPD Access/km 18.13 0.00 7.43 4.46 
DWD Driveway/km 132.40 0.00 47.02 27.24 
PedX 0/1 1.00 0.00 0.64 0.48 
BS 0/1 1.00 0.00 0.51 0.50 
SchZn 0/1 1.00 0.00 0.20 0.40 
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Methodology 

Since collisions are discrete, random and non-negative events (i.e., count data), it is not possible 
to model collision frequency as response variable (Y) of a simple linear regression model. 
Following the literature, collisions can be modelled using a Poisson-Gamma (negative binomial) 
distribution, which accounts for the fact that collisions are count data and for their overdispersion 
(Lord and Mannering 2010). A Poisson-Gamma model for a set of crash data Y୧୩ at site i of type 
k can be written as: 

 Y୧୩~Poisson(λ୧୩),       i = 1, 2, 3, … , n      k = 1, 2, 3, … , j (Eq. 6) 

where λ୧୩ is the expected mean of crashes of category k for the i-th site and can be modeled for 
road segments as: 

 ln(λ୧୩) = β୩ + βଵ୩ln(𝐴𝐴𝐷𝑇୧) + βଶ୩ln(𝐿୧) +  β୫୩X୧୫

୫

ଷ
+ ε୧୩  (Eq. 7) 

where β୩ is the intercept for type k, βଵ୩ and βଶ୩ are the respective coefficients of the average 
annual daily traffic (AADT) and the segment length (L), β୫୩ the coefficient of the m-th explanatory 
variable and category k, X୧୫ the value of the m-th explanatory variable for the i-th site and 
category k, and ε୧୩ is a gamma distributed term with overdispersion parameter equal to κ. 

An alternative to the Poisson-gamma model is the so-called Poisson Log-Normal (PLN) model 
where  ε୧୩ is a normally distributed term with zero mean and  as standard deviation. This latter 
modeling was the one employed in this study as recent research has showed that crash prediction 
models using the Poisson Log-Normal distribution result in better goodness of fit then Poisson-
Gamma (Barua, El-Basyouny, and Islam 2016; El-Basyouny and Sayed 2009; X. Wang et al. 
2015). 

Equation 7 describes a standard SPF, which can be included and modeled simultaneously in a 
path analysis framework (see next sub-subsection). In this way, speed-related variables can be 
employed as a mediator that can predict collision frequency (Y) and can be predicted by site-
related characteristics (road and traffic features). Bayesian statistics can be employed for SPFs 
to estimate model parameters (). An alternative is to employ the generalized linear modeling 
approach and the maximum likelihood estimation for model parameters. 

Path Analysis using Speed Variability as Mediator 

The proposed methodology to model speed variability and collision frequency relationship is path 
analysis. Path analysis is a form of Structural Equation Modeling (SEM) where all variables are 
measured (i.e., observed variables). Path analysis is a technique that allows to test multiple 
relationships simultaneously. The use of path analysis modeling allows to mediate or moderate 
the relationship between speed and crash frequency by different roadway and traffic factors. 
Mediation analysis is, in fact, a type of path analysis which is used to understand how a variable 
x is related to another variable y. In other words, mediation is used to test whether the effect of x 
on y is (i) direct only, (ii) indirect only (through a mediator variable, m) or (iii) both direct and 
indirect. Case (ii) is known as full mediation, whereas the effect in case (iii) is considered to be 
partially mediated. The focus of this work is the mediation effect of speed-related variables and 
their effect on crash frequency. This can be summarized as illustrated in Figure 1 where traffic 
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and roadway characteristics can predict crash frequency directly, indirectly through a speed-
related variable or directly and indirectly simultaneously. 

 
Figure 1 Path Analysis using a Speed-related variable as Mediator 

In symbols, a simple mediation model depicts a model where x has an effect on y through a single 
mediator m. That is, in addition to the direct relationship between x and y, x is assumed to have 
an effect on m and this effect then propagates to y. Eqs. 8 and 9 are regression equations that 
represent a simple mediation model. Specifically, Eq. 8 represents the combination of the paths 
from m to y and x to y, and Eq. 9 represents the path from x to m (Gargoum and El-Basyouny 
2016) 

 y୧ = β + βଵm୧ + βଶx୧ + εଵ୧ (Eq. 8) 

 m୧ = γ + γଵx୧ + εଶ୧ (Eq. 9) 

where, y୧ denotes the outcome variable; m୧ is the mediator variable; x୧ represents the set of 
independent variables (exogenous); εଵ୧ and εଶ୧ are the errors associated with each of the 
components of the model structure; β and γ denote the intercepts of the models; and βଵ, βଶ 
and γଵ are all regression coefficients. It is worth to mention that in this study Eq. 8 was modeled 
as an SPF (see Eq. 7) and Eq. 9 was modeled as a multiple linear regression predicting the 
speed-related variable of interest. Figure 2 shows a diagram of the path analysis variables and 
parameters. 
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Figure 2 Path analysis variables and parameters 

The coefficient γଵ represents the magnitude of change in m associated with a unit change in x; 
similarly, the coefficient βଶ represents the magnitude of change in y associated with a unit 
change in x, which also denotes the direct effect of x on y. Moreover, the coefficient βଵ represents 
the magnitude of change in y associated with a unit change in m. To that end, the indirect effect 
of x on y can then be estimated using the product-of-coefficient estimator γଵβଵ (Hayes 2013). 

Results  

This section describes the results of the path analysis modeling using a speed variability variable 
as mediator to predict collision frequency for the 140 road segments described before. First, the 
selection of the mediating (speed-related) variable was investigated in the following way: four 
baseline SPFs with the same mathematical form of Eq. 7 were developed, where each potential 
speed-related variable was introduced as independent predictor (X) of crash frequency (). The 
speed-related variables selected for the preliminary modeling were three speed variability 
variables, i.e., the coefficient of variation of speed (CV), the standard deviation of speed (SD), the 
variation of speed (Var). SPFs were developed with SAS software, using the traditional negative 
binomial regression (GLM approach). All models showed an acceptable overall goodness of fit 
but the results showed that among speed-variability variables, CV was the most significant 
variable associated to collision frequency (significant at the 90% confidence level). In contrast SD 
and Var were found to be insignificant in their association to collision frequency. Therefore, CV 
was selected as the speed-related variable for this research.  

Development of Path Analysis  

Developing a path model (as presented in Figure 1 and 2) involved the selection of the 
independent variables that predicted CV, collision frequency or both, where the effect of some of 
these variables on collision frequency was mediated by CV. PLN distribution modeling technique 
was employed to develop the SPF component of the path model with T5Y as the 5-year collision 
frequency. Multiple linear regression was employed for the CV prediction model component. The 
best-fitting path model was obtained by eliminating variables from the initial set of variables (Table 
2) that were not statistically significant at the 95% confidence level. However, multiple modeling 
trials suggested the inclusion of variables like AccPD (predicting CV) and BL (predicting T5Y) 
significant at the 90% confidence level. This allowed to retain in the model other variables 
significant at the 95% confidence level. WinBUGS 1.4.3 was employed for path analysis so that 
Bayesian estimates of model parameters could be obtained. Posterior estimations from the two 
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path models were obtained via two chains with 20,000 iterations each, out of which 10,000 were 
excluded as burn-in samples. The trace plots for all model parameters were checked to monitor 
convergence. The deviance information criterion (DIC) was used for model selection. 

Figure 3 provides a diagram of the resulting path model using the variables collected in this study. 
The resulting coefficients along with their standard deviation, confidence intervals are presented 
in Table 3. The standard deviation of the random error terms εଶ୧ and εଵ୧ in Eqs. 8 and 9 were 
denoted as sigmaCV and sigmaSPF indicating the standard deviations of error terms of the CV 
prediction model and the T5Y crash prediction model, respectively. 

Table 3 Coefficient estimates of path analysis 

Variable Posterior Estimate SD 
Percentiles 

2.50% 5.00% 95.00% 97.50% 

InterceptCV  0.344 0.028 0.290 0.299 0.390 0.398 
SchZn a1 0.042 0.010 0.023 0.026 0.059 0.063 
Med a2 -0.063 0.021 -0.103 -0.097 -0.029 -0.022 
Lane a3 0.080 0.026 0.029 0.037 0.122 0.130 
AccPD a4 -1.93E-03* 1.03E-03 -3.93E-03 -3.61E-03 -2.33E-04 1.06E-04 
DWD a5 3.00E-04 1.46E-04 1.36E-05 6.19E-05 5.40E-04 5.86E-04 
TWW a6 -0.009 0.002 -0.013 -0.012 -0.005 -0.004 
L a7 -3.18E-05 1.20E-05 -5.53E-05 -5.16E-05 -1.21E-05 -8.40E-06 
BL a8 -0.038 0.018 -0.073 -0.067 -0.009 -0.004 
PedX a9 -0.020 0.010 -0.041 -0.037 -0.004 -0.001 
CV  0.043 0.003 0.038 0.039 0.048 0.049 
InterceptSPF  -8.531 1.316 -11.130 -10.700 -6.403 -5.991 
Ln(AADT) b1 0.688 0.086 0.526 0.550 0.836 0.862 
Ln(L) b2 0.667 0.138 0.394 0.436 0.898 0.929 
CV b3 4.054 1.920 0.310 0.932 7.171 7.928 
AccPD b4 0.046 0.019 0.008 0.015 0.076 0.082 
BL b5 -0.566* 0.319 -1.209 -1.095 -0.037 0.058 
SPF  0.786 0.061 0.675 0.690 0.892 0.917 
Total DIC  312.548      

* Parameter statistically significant at the 90% CL,  
All other variables were statistically significant at 95% CL. 
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Figure 3 Resulting Path Model with CV as Mediator  

With regard to factors predicting crash frequency (T5Y), the presence of bike lanes (BL) on 
roadway segments was found to be associated to safer conditions by contributing directly to the 
reduction of crash frequency; in fact, BL parameter estimate was found negative and equal to -
0.5664 and significantly different from zero at the 90% CI. Conversely, higher access point density 
(AccPD; b4 = 0.0460) and higher speed variations (CV; b3 = 4.054) were associated to higher 
crash frequency (significant estimates at the 95% CI). Parameter estimates of exposure variables 
such as AADT (b1 = 0.6879) and L (b2 = 0.6671) were found positively associated to collision 
frequency which was expected as well. With regard to factors affecting CV, roadway segments in 
the proximity of school zones (SchZn), segments with lane configurations (Lane) different from 
the baseline case (two-way two-lane residential streets), and segments with higher density of 
driveways (DWD) were found to be associated to higher variability in speeds (CV) being the 
parameter estimates positive and equal to 0.0425, 0.0796 and 0.0003, respectively. On the other 
hand, longer roadway segments (L; a7 = -0.000032), segments with pedestrian crossing locations 
(PedX; a9 = -0.0205), median-divided segments (Med; a2 = -0.0626), wider cross-sections (TWW; 
-0.0086), segments with bike lanes (BL; a8 = -0.0379), and segments with more stop-controlled 
access points (AccPD; a4 = -0.00193) were associated to lower speed variability (CV). Finally, 
the presence of more access points was expected to be associate to higher speed variation, but 
the parameter estimate was significant only at the 90% confidence level. On the other hand, all 
other CV predictors were significant at the 95% confidence level. 

While variables such as AADT, L, CV, AccPD and BL estimated the association to collision 
frequency directly, the effects of the predictors of CV were indirectly mediated either fully or 
partially through CV. Indirect effects of the predictors of CV on the likelihood of crashes were 
measured as the product of the coefficient associated to these predictors (ai) and the coefficient 
estimate of CV in the crash prediction model component (b3). In symbols, the indirect effect (ii) 
can be estimated by the following equation: 

 i୧ = a୧ ∗ bଷ (Eq. 10) 
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Since the coefficient estimate of CV in the crash prediction model component was positively 
associated with the likelihood of crashes, the sign of CV predictors was directly carried over in 
the prediction of T5Y. This meant that variables that contributed to lower levels of speed variability 
in the population of drivers also contributed to lower levels of crashes, and vice versa. Moreover, 
the total effects (ti) of variables that predict CV and T5Y simultaneously (partial mediation) can be 
estimated as the sum of their direct (bi) and indirect effects (ii) as shown in the following equation: 

 
t୧ = b୧ + i୧ 
t୧ = b୧ + (a୧ ∗ bଷ) 

(Eq. 11) 

The summary statistics of the indirect and total parameter estimates is presented in Table 4. 

Table 4 Indirect effects of path analysis 

Variable Posterior Estimate SD 
Percentiles 

2.50% 5.00% 95.00% 97.50% 
SchZn i1 0.172 0.094 0.011 0.036 0.338 0.378 
Med i2 -0.254 0.153 -0.599 -0.533 -0.042 -0.010 
Lane i3 0.322 0.190 0.013 0.054 0.670 0.752 
AccPD i4 -7.81E-03* 5.95E-03 -2.16E-02 -1.88E-02 -6.90E-03 1.01E-03 
DWD i5 1.22E-03* 8.71E-04 -8.18E-05 5.90E-05 1.09E-03 3.27E-03 
TWW i6 -0.035 0.019 -0.077 -0.069 -0.033 -0.002 
L i7 -1.29E-04 8.12E-05 -3.15E-04 -2.78E-04 -1.18E-04 -1.43E-06 
BL i8 -0.153* 0.107 -0.404 -0.352 -0.011 0.006 
PedX i9 -0.083* 0.060 -0.224 -0.196 -0.004 0.005 
Total Effects        
AccPD t4 -0.010* 0.007 -0.025 -0.022 -0.001 7.12E-04 
BL t8 -0.191 0.119 -0.464 -0.412 -0.028 -0.004 
* Parameter statistically significant at the 90% CL,  
All other variables were statistically significant at 95% CL. 

The indirect effects of the speed variation (CV) predictors on the collision frequency were 
significant at the 95% CI except for AccPD, DWD, BL and PedX, which were significant at the 
90% CI. Bike lane presence contributed to lower speed variation and lower crash frequency also 
indirectly. The total effect of the bike lane presence is sum of the partial mediation through CV 
(a8*b3) and the parameter estimate of BL in the SPF (b5). The direction of the total effect of BL on 
the crash frequency remained consistent (negative). The direct effect of AccPD (b4) on the 
frequency of crashes was positive, however, this effect was outweighed by the partial mediation 
as the product of the parameter estimate of CV in the SPF (b3) and AccPD estimate of the CV 
prediction (a4) was a larger negative value compared to b4. Hence, the total effect of AccPD on 
the frequency of crashes was negative meaning that the higher the frequency of access points on 
a road segment, the lower the frequency of crashes. However, this result was not statistically 
significant at the 95% confidence level.  

CONCLUSIONS 

This work aimed at investigating speed variability as a potential surrogate measure of safety able 
to mediate the relationship between collision frequency and road and traffic characteristics. The 
coefficient of variation (CV) of speeds was found to be the speed variability measure more 
significantly associated to crash frequency and, therefore, a path analysis model was built where 
CV was employed as a mediator variable which is predicted by roadway and traffic characteristics 
of the sites and can predict crash frequency. A path analysis framework can describe the direct 
and indirect dependencies among a set of variables. With path analysis, a relationship between 
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an independent and a dependent variable can be direct or mediated by a third factor. The results 
demonstrated that CV was positively related to crash frequency, i.e., streets with higher speed 
variability showed lower safety levels, and the relationship was found statistically significant. 
Moreover, the interrelationship among roadway and traffic factors and crash frequency was 
analyzed, providing a better understanding of the indirect effect of independent predictors of CV 
on collision frequency. Overall, the results can be particularly important in the context of using 
speed-related variables as surrogate measures of safety, which would allow the assessment of 
safety levels of urban residential streets without waiting for collisions to occur. 

Finally, future research should validate these results with different data set from different 
municipalities to account for local factors related to roadway, environmental and driver 
characteristics. Furthermore, more work needs to be conducted to explore more potential 
variables and relationships with regard to speed and safety modeling. The outcomes of the path 
model appear highly promising and, therefore, more combinations of variables could be explored 
to gain a better understanding on the effects of different speed-related variables and other 
independent variables on crash frequency. Although this study was aimed for to be as 
comprehensive as possible in the inclusion of different independent variables, there is room to 
explore different modeling structures. 
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