

Evaluation of milling-surfacing performance

Amel Ferjani, Alan Carter and Michel Vaillancourt

Introduction

- The assessment of pavement performance life is necessary in order to identify and define pavement maintenance and rehabilitation needs,
- Different maintenance strategies can be applied and performance life of rehabilitated pavement can change depending on the techniques,
- The performance models used for rehabilitated pavements are the same as those used for new pavements.

Objective

Evaluate the factors affecting performance life of millingsurfacing of flexible pavement and test of performance models used.

Some existents performance models

Fatigue cracking

$$D = \sum_{i=1}^{n} d_{r_i} = \sum_{i=1}^{n} \frac{n_i}{N_{f_i}}$$
 (Miner's law)

$$N_f = k_1 \left(\frac{1}{\varepsilon_t}\right)^{k_2} \left(\frac{1}{E}\right)^{k_3}$$

Where:

D: damage;

n_i: actual traffic for period i;

n: total number of periods;

N_{fi}: allowed traffic under conditions

prevailing period i;

 ε_t : tensile strain at the critical location;

E: stiffness of the material;

 k_1,k_2,k_3 : regression coefficients.

Permanent Deformation

$$PD = \sum_{i=1}^{n} \varepsilon_p^i h^i$$

$$\frac{\varepsilon_p}{\varepsilon_r} = a_1 \times T^{a_2} N^{a_3}$$

Where:

PD: pavement permanent deformation;

n: number of sublayers;

h_i: thickness of sublayers i;

 $\varepsilon_{\rm p}^{\rm i}$: total plastic strain in sublayer i;

ε_n: accumulated plastic strain at N

repetitions of load (in/in);

 $\varepsilon_{\rm r}$: resilient strain of the asphalt material

(in/in);

N: number of load repetitions;

T: temperature (degF);

 a_1, a_2, a_3 : regression coefficients.

Data Collection

	State	Section	Overlay Type	Overlay Thickness (mm)	Maintenance
	ALABAMA	01-506	NO RAP	51	WITH MILLIING
		01-507	NO RAP	127	WITH MILLIING
		01-508	WITH RAP	127	WITH MILLIING
		01-509	WITH RAP	51	WITH MILLIING

- Overlay thickness and mixture type (with RAP or not) have an effect on fatigue, rut and IRI performance trends.
- Results predicted with mechanistic-empirical software (AASHTOWare Pavement ME) are different for those observed.
- Mechanistic empirical models doesn't consider different factors having influence on performance life of rehabilitated pavements such as recycled mixture, overlay thickness, cracks before overlay...